Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity
نویسندگان
چکیده
Porous Ti-6Al-4V scaffolds fabricated by means of selective laser melting (SLM), having controllable geometrical features and preferable mechanical properties, have been developed as a class of biomaterials that hold promising potential for bone repair. However, the inherent bio-inertness of the Ti-6Al-4V alloy as the matrix of the scaffolds results in a lack in the ability to stimulate bone ingrowth and regeneration. The aim of the present study was to develop a bioactive coating on the struts of SLM Ti-6Al-4V scaffolds in order to add the desired surface osteogenesis ability. Mesoporous bioactive glasses (MBGs) coating was applied on the strut surfaces of the SLM Ti-6Al-4V scaffolds through spin coating, followed by a heat treatment. It was found that the coating could maintain the characteristic mesoporous structure and chemical composition of MBG, and establish good interfacial adhesion to the Ti-6Al-4V substrate. The compressive strength and pore interconnectivity of the scaffolds were not affected by the coating. Moreover, the results obtained from in vitro cell culture experiments demonstrated that the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSCs) on the MBG-coated Ti-6Al-4V scaffolds were improved as compared with those on the conventional bioactive glass (BG)-coated Ti-6Al-4V scaffolds and bare-metal Ti-6Al-4V scaffolds. Our results demonstrated that the MBG coating by using the spinning coating method could be an effective approach to achieving enhanced surface biofunctionalization for SLM Ti-6Al-4V scaffolds.
منابع مشابه
Ti-6Al-4V Synthesized by Mechanical Alloy Method and Mechanical and Bioactivity Properties of Ti-6Al-4V/HA-Clay Nano composite
Nowadays, titanium-based alloys are among the most attractive metallic materials for biomedical applications (as implants) due to their non-biodegradability, low density, good mechanical properties as well as their good biocompatibility. Hydroxyapatite (Ca10 (PO4)6(OH)2, HA) has been widely used for biomedical applications due to its bioactive, biocompatible and osteoconductive properties. Firs...
متن کاملFabrication and characterization of the Ti-6Al-4V/Mg scaffold
Ti–6Al–4V scaffolds were fabricated by powder metallurgical space holder technique in this research. The most added magnesium (Mg) powder was evaporated and a skeleton of Ti-6Al-4V alloy was produced. For this purpose Ti-6Al-4V and Mg powders mixture compacted in a steel die by applying uniaxial pressure of 500 MPa before sintering the green product in a sealed quartz tubes at 900 °C for 2 hour...
متن کاملPlasma-sprayed CaTiSiO5 ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity.
Novel Ca-Si-Ti-based sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study was to prepare sphene coating on titanium alloy (Ti-6Al-4V) for orthopaedic applications using the plasma spray method. The phase composition, surface and interface microstructure, coating thickness, surface roughness and bonding strength of the plasma-sprayed sphene...
متن کاملTIG Surface Alloying of Ti-6Al-4V with Nitrogen and Chromium for Improved Tribological Properties
Due to special properties such as low density, high strength and high corrosion resistance Ti-6Al-4V alloy has been used extensively in various industries, especially in the aerospace aspects. However the major problem of this alloy is its poor tribological properties under relatively high loads. In the present study, in order to improve the tribological properties of mentioned alloy, chromium ...
متن کاملAntimicrobial Activity of Nitric Oxide-Releasing Ti-6Al-4V Metal Oxide
Titanium and titanium alloy materials are commonly used in joint replacements, due to the high strength of the materials. Pathogenic microorganisms can easily adhere to the surface of the metal implant, leading to an increased potential for implant failure. The surface of a titanium-aluminum-vanadium (Ti-6Al-4V) metal oxide implant material was functionalized to deliver an small antibacterial m...
متن کامل